	受	験	番	号	
	- 1			- 1	
l					

令和7年度個別学力検査解答一覧(前期日程)

	問題 1 (英 語)	問題 2 (物 理)	問題 3 (化 学)	問題 4 (生 物)	問題 5 (数 学)
解答					
評 点					

評点合計

注意事項

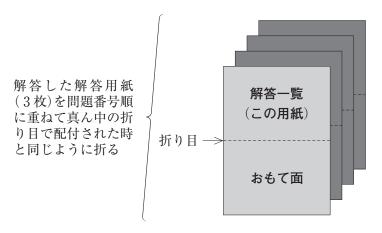
- 1 解答用紙には下記のものが含まれています。
 - ①と②のすべて(計6枚)に受験番号(数字4桁のみ)を忘れずに記入しなさい。

解答一覧

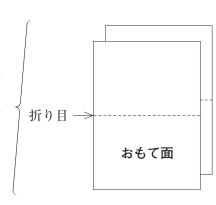
1枚……試験終了後に回収

② 問題1~5の解答用紙

計5枚……試験終了後にすべて回収


③ 白紙(計算・下書き用)

2枚……持ち帰りなさい


※問題1~5の解答用紙については、追加の配付は行いません。

- 2 選択解答した問題(問題 $2\sim 5$ の中から 2 つ)は、上記の表の解答欄(太枠線内)に \bigcirc 印を記入しなさい。 なお、問題 1 (英語)は全員が必ず解答する問題となっているので、あらかじめ \bigcirc 印が印刷されています。
- 3 解答欄の○印が、3つ未満または4つ以上の場合は、いずれの科目も採点の対象となりません。
- 4 評点欄には何も記入してはいけません。
- 5 試験終了後、下図のように解答一覧及び解答した問題の解答用紙の計4枚と、選択しなかった問題の解答用紙計2枚の2つに分けて回収します。仕分けする時間は試験終了後にとるので、監督者の指示に従うこと。

試験終了後の解答用紙の分け方

解答しなかった解答 用紙(2枚)を重ねて 真ん中の折り目で配 付された時と同じよ うに折る

受	験	番	号	
- 1			- 1	

問題 1 (英語) 解 答 用 紙

評 点 1

Answers

			\frown	
1. (a)	(p)	(c)	(d

5. Electricity access	in	the	poorest	countries	was	on	
-----------------------	----	-----	---------	-----------	-----	----	--

- $\textbf{6. (a)} \qquad \qquad \textbf{(b)} \qquad \qquad \textbf{(d)}$
- 7. (a) (b) (c) (d)
- 8. (a) (b) (c) (d)
- 9. (a) (b) (c) (d)
- 10. (a) (b) (c)
- 11. (a) (b) (c) (d)
- 12. **for**
- 13. on
- 14. **with**

(b)

(c)

(q)

15. (a)

- 16. This is ____ a ___ direct ___ result ___ of ___ global ___ injustices
- 17. (a) (b) (c) (d)

問題 2 (物理) 解 答 用 紙

評 点	2	
-----	---	--

(ア) (イ) (ウ) (エ)

13) (理由)

光ファイバー中の光速度 c_1 は,真空中の光速度 $c=3.0 \times 10^8 \, \mathrm{m/s}$ より,

$$c_1 = \frac{c}{1.3} = 2.3 \times 10^8 \ m/s$$

光が光ファイバーの中を0.01 秒間に進む距離は 2.3×10^3 km であり, 信号が往復することを考えると、遠隔手術が可能な直線距離は、1.2× 10³ km 以内になるため。

受	験	番	号	

問題 3 (化学) 解 答 用 紙(表)

問 1

1)	ア	ゾル	1	ゲル
	ウ	キセロゲル	エ	分子
	オ	会合(ミセル)	カ	保護
	+	チンダル現象	ク	ブラウン運動

3) (1)	化学反応式	$FeCl_3 + 2H_2O$	\rightarrow	FeO(OH) +	3HCl
	塩化鉄(Ⅲ)水溶液	黄褐色		水酸化鉄(Ⅲ)の コロイド溶液	赤褐色

(2)	
(4)	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	X2-1/1

(3)	<i>ب</i>	4	_	C
	′	u	_	·

(4) 計算式等

終点では反応したCI-とAg+の物質量は等しいので、はじめにあった塩化物イオンCI-の濃度を x [mol/L]とおくと x × 20.0 / 1000 L = 0.010 mol/L × 36.0 / 1000 L

 $x \times 20.0 / 1000 L = 0.010 mol/L \times 36.0 / 1000 L$ x = 0.018 mol/L

塩化物イオン Cl⁻ のモル濃度 0.018 mol/L

※ 解答欄は裏面に続きます。

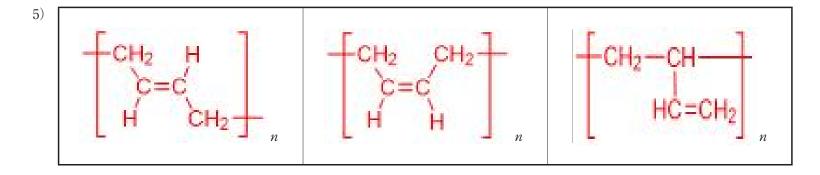
問題 3 (化学) 解 答 用 紙(裏)

問 2

1)	ア	付加	1	無	ウ	スチレン
	ı	熱可塑性樹脂	オ	共		

2) **2**n-2

3) H-C-C-H


4) (1) 計算式等 高分子 X の平均モル質量を M [g/mol], 測定に用いた高分子 X の質量を w [g] とするとファントホッフの式 $\Pi V=nRT$ (Π : 浸透圧 [Pa], V: 溶液の体積 [L], n: 物質量 [mol], R: 気体定数 [Pa·L/(K·mol)], I: 絶対温度 [K]) より $\Pi V=(w/M)RT$ となり $M=(wRT)/(\Pi V)$ 問題の数値を代入すると $M=(0.400\times8.31\times10^3\times300)/(600\times0.1)=8.31\times2\times10^3=1.662\times10^4$ g/mol したがって、平均分子量は 1.66×10^4 となる。 P均分子量 1.66×10^4

(2) 計算式等

高分子 X 水溶液の質量モル濃度は $m=(0.400)/(1.66\times10^4\times0.1)$ [mol/kg] 凝固点降下度 Δ $t=K_fm$ (K_f : モル凝固点降下, m: 質量モル濃度 [mol/kg]) に代入すると Δ Δ $t=(1.85\times0.400)/(1.66\times10^4\times0.1)=4.45\times10^{-4}$

凝固点降下度 4.5×10⁻⁴ K

受	験	番	号	
- 1				

問題 4 (生物) 解 答 用 紙(表)

問 1

1)	ア	水平分布	1	夏緑樹林	ウ	落葉広葉樹
	I	針葉樹	オ	垂直分布	カ	針葉樹林
	+	森林限界				

~ \								
2)								
4)	٠.		,		_	_	,,	
	1 ク 1	V	ケ	V	コ		ーサ	\bigcirc
		^	l 1	\wedge			ĺ .	()
		= =		= =				

3)	1	硬葉樹林	記号	ソ	2	夏緑樹林	記号ス
	3	照葉樹林	記号	チ	4	ステップ	記号シ

4)	(1)	(1)						
1/	(1)	•	111	1 4 4m	_	4六百日		0.5
			ツ	寸寸\$ 勿	ァ	拼 昵	\	3.5
				מורע		1× HK		0.0

(2) ① 病原体の遺伝子 W のもつ塩基配列のうち

プライマーYが結合する領域のDNAに塩基 置換が生じたため。

② ナ、ニ、ネ

(3)	品種 C	R1r1r2r2 r1r1R2r2
	品種 D	R1r1R2r2

※解答欄は裏面に続きます。

問題 4 (生物) 解 答 用 紙(裏)

問 2							
1)	(1)	ア ATP	ィ 二酸化物		ウ炭	素(炭酸)	
		ェ チラコイド	オーカロテン、ま	ミたはキサントフィル	カー吸	収スペクトル	,
		キーフィトクロム	ク クリプト	クロム			
	(2)	① X ②	Х	③ O		4	×
2)	(1)	高い c d a	b 低い				
	(2)	最終収量一定の法則					
	個体	本群密度が高くなるにしたがって					
		個体間の競争が激	ー りしくかり	1個体 <i>0</i>	大き	きさ	
		が小さくなるため					
	(3)	品種 Y					
	(4)	HU1E I					
	(4)			<u> </u>			
	占	品種Yは品種Xと	光合成器	の量は同	じで	あるが、	
		ト層部まで相対照 上光合成器官の量	<u>度が高いた</u> が小さいた	とめ光合成 とめ呼吸量	量が が小	大きくだ	なり、
		F/U口/戏砧 ロM/里	71.47 (C / 17)	<u>にひげて収集</u> 	<u>የ Γν· Γ</u>	<u>C</u> \ /& 1	21112
	(5)			<u> </u>		1 1	
	(-)	В					
	(6)						
	<u></u>	他の植物に光を遮	られてR/F	Rが低くな	った	時に、き	きを
		伸長させることで		て、光合	戏にん	必要な光	を
		より多く獲得でき	る から			1 1	

受	験	番	号	
			- ;	
1			1	
- 1				
- 1			1	
1			1	
			- !	

問題 5 (数学) 解 答 用 紙(表)

評 点 5	
-------	--

※解答用紙は1枚のみです。問3の解答は裏面に書きなさい。

問 1

1) 4

n = 3

3) t = 2, -2

問2(問2の1)の(3)以降の解答は、下記の縦線の右側に書きなさい。)

1)

(1)
$$P_1 = 0$$
 $Q_1 = 1/2$ $R_1 = 1/2$

(2) $P_2 = 1/2$

 $Q_2 = 1/4$

 $R_2 = 1/4$

(3) 該当事象が起こる確率は $P_2 \times 1/2 = 1/4$.

2)

2) (1) a = 1/2.

(2) $P_n + Q_n + R_n = 1$ であること、また 2) - (1) から、 $P_{n+1} = \frac{1}{2} - \left(\frac{1}{2}\right)P_n$ である. この漸化式を解いて、 $P_n = \left(\frac{1}{3}\right)\left(1 + 2\left(-\frac{1}{2}\right)^n\right)$.

(3) 2)の(2)で得た漸化式と同様の漸化式が Q_n,R_n においても成り立つ.

また、1)-(1) から P_1 と Q_1 の値が異なることに注意して、 P_n と Q_n の2 つの漸化式を解くと、

$$P_n = \left(\frac{1}{3}\right) \left(1 + 2\left(-\frac{1}{2}\right)^n\right), \qquad Q_n = \left(\frac{1}{3}\right) \left(1 - \left(-\frac{1}{2}\right)^n\right)$$

となる。 これから、 $P_n - Q_n = \left(-\frac{1}{2}\right)^n$ を得る.

 $0 < \left(-\frac{1}{2}\right)^n \le \frac{1}{32}$ となるための必要十分条件は、

n=2m (m は整数かつ $m \ge 3$) であり、この条件が答えとなる。

+

問題 5 (数学) 解答用紙(裏) ※解答は、この行よりも下かつ縦線の右側に書きなさい。

問3

1)

(1)
$$x_p = \frac{\sqrt{6}}{3}r > 2r^2 \text{ b.s. } r < \sqrt{6}/6$$

(2)
$$3x^2+2r^2=tx$$
 を平方完成すると、 $3\left(x-\frac{t}{6}\right)^2-\frac{t^2}{12}+2r^2=0$ となる.
曲線 C が直線 L_1 と接するとき、 $\frac{t^2}{12}=2r^2$ を満たす. つまり、 $t=2\sqrt{6}r$.

2)

(1) 交点
$$P$$
 の x 座標 (x_p) を使って、三角形の面積 $S_1=\frac{tx_p^2}{2}$ を求めると、 $S_1=\left(\frac{2\sqrt{6}}{3}\right)r^3$.

(2)
$$S_2 = \int_0^{x_p} (3x^2 + 2r^2) dx - \pi r^4$$
 を計算して、 $S_2 = \left(\frac{8\sqrt{6}}{9}\right) r^3 - \pi r^4$.

(3) 図形の考察より、 $S_3 - S_4 = S_1 - S_2$ である.

ここで
$$S_1-S_2=\frac{f(r)}{3\sqrt{6}}$$
 と置くと、2)-(1)と2)-(2)より、 $f(r)=-4r^3+3\sqrt{6}\pi r^4$ となる.

以下, f(r) が最小になるrの値を求める.

$$\frac{df}{dr}(r) = 12r^2(-1 + \sqrt{6}\pi r)$$
 であることから、 $r = r_c = (\pi\sqrt{6})^{-1}$ は $\frac{df}{dr}(r_c) = 0$ を満たす.

これから、1)-(1)の条件 $r_c < \sqrt{6}/6$ が成立することに注意して、

 $0 < r < r_c$ で f(r) は単調減少, $r_c < r < \sqrt{6}/6$ で f(r) は単調増加することがわかる. つまり,f(r)は $r = r_c$ で最小値 $-r_c^{\frac{3}{2}}$ をとり,このとき $S_1 - S_2$, $S_3 - S_4$ も最小になる.